Tagged with "Earthquake"
M 4.1 - CRIMEA REGION - 2014-03-02 03:34:31 UTC Tags: Earthquake Crimea Region 2014-03-02 03:34:31 UTC

M 4.1 - CRIMEA REGION, UKRAINE - 2014-03-02 03:34:31 UTC 

 

Magnitude ML 4.1
Region CRIMEA REGION, UKRAINE
Date time 2014-03-02 03:34:31.0 UTC
Location 44.27 N ; 34.31 E
Depth 40 km
Distances 372 km SE of Odessa, Ukraine / pop: 1,001,558 / local time: 05:34:31.0 2014-03-02 
72 km SE of Sevastopol’, Ukraine / pop: 379,200 / local time: 05:34:31.0 2014-03-02 
25 km SE of Gaspra, Ukraine / pop: 11,000 / local time: 05:34:31.0 2014-03-02 
Global view
Source parameters reviewed by a seismologist

 
More information at:

 Geophysical Survey. Russian Academy of Sciences Obninsk, Russia
6.1 magnitude earthquake strikes Indonesia Tags: earthquake strikes Indonesia

6.1 magnitude earthquake strikes Indonesia

Indonesia 6.1 Feb 4
February 4, 2014 – INDONESIA – The U.S. Geological Survey says a magnitude-6.1 earthquake has been recorded in Indonesia. The Pacific Tsunami Warning Center has no warning in effect. The Geological Survey report says the quake hit 197 miles (318 kilometers) east of Dili, East Timor, just after 1730 GMT. The quake’s depth was recorded at 11 miles (18 kilometers). Indonesia is located on the Pacific “Ring of Fire,” an arc of volcanoes and fault lines encircling the Pacific Basin. –ABC News
February 2014 – INDONESIA The government has raised the status on another 19 volcanoes in the country to alert level — the second-highest category — in the wake of the Mount Sinabung eruption in North Sumatra that killed 16 people on Saturday. Besides the 19 new additions, three volcanos have been on high alert status since last year. They include Lokon and Karangetang in North Sulawesi and Rokatenda in East Nusa Tenggara. The National Disaster Mitigation Agency (BNPB) issued the raised status on Monday for the 19 volcanoes, which are scattered across the archipelago, but has yet to call for the evacuation of populations living nearby. The 19 volcanoes are Kelud, Ijen, Bromo, Semeru and Raung in East Java; Lewotobi Perempuan in East Nusa Tenggara; Ibu, Gamkonora, Dukono and Gamalama in North Maluku; Soputan in North Sulawesi; Sangeang Api in West Nusa Tenggara; Papandayan in West Java; Dieng in Central Java; Seulewah Agam in Aceh; Talang and Marapi in West Sumatra; Anak Krakatau in Banten; and Kerinci in Jambi. Indonesia is among the world’s most seismically active countries, situated on the Pacific Ring of Fire, an arc of volcanoes and fault lines encircling the Pacific Basin. The 19 volcanoes are among about 127 active volcanoes in Indonesia. Mt. Sinabung has been sporadically erupting since September. Though the alert level for the 19 volcanoes had been raised, Sutopo called on nearby residents not to panic. “Volcanoes erupt in stages, they won’t suddenly erupt. Their activity can be categorized from normal to waspada [alert] to siaga [high alert] to awas [danger, the highest level],” he said on Monday.
He said that the BNPB was now keeping an eye on Mount Kelud, whose status was raised to alert following intensified volcanic activity. The BNPB decision to raise the status of Mt. Kelud had triggered panic among local residents. Local officials in Kediri have issued a warning to people living close to Mt. Kelud to stay outside a 2-kilometer radius set by the The Center for Volcanology and Geological Disaster Mitigation (PVMBG). On Saturday, at least 16 people were killed and three others severely injured due to pyroclastic clouds emitted by Mt. Sinabung. Previously, the volcano’s ongoing eruptions had claimed the lives of 31 evacuees from various illnesses such as depression, asthma and hypertension. Rescuers had to halt operations due to fears of further eruptions. Currently, the evacuation zone is between 5 and 7 km on the southeast slope of the volcano. Sixteen villages had to be evacuated following the eruptions. Meanwhile, responding to the BNPB report, Coordinating Minister for People’s Welfare Agung Laksono called on people living close to the volcanoes to remain calm. “[The raising of the alert status] is to raise awareness among government officials and members of the public so that they can anticipate the worst from the early stage,” Agung said as quoted by Antara news agency. Agung said that the population in a disaster zone should heed government instructions to evacuate in the event of a volcanic eruption. “We ask for cooperation from residents. If the local government decides to evacuate their neighborhood they have to follow the procedures,”
 Agung said. The country has been battered by a string of natural disasters in recent months. Authorities in a number of disaster-prone regions have been warned about the potential for worsening disasters, including landslides and floods, due to heavy rains nationwide. In West Java, the PVMBG advised that people living in landslide-prone areas in Ciramba and Mekarmulya subdistricts, Cikalong district, Cianjur, should be relocated. In Jombang, East Java, 14 people were buried by a landslide on Monday. Seven bodies have been recovered, while the other seven remain missing. In Semarang, a landslide displaced 32 families from the Tangkil Baru residential complex in Sukorejo subdistrict, Gunungpati district, whose houses were destroyed. Last week, sections of the Java’s northern coastal highway were inundated by floodwaters causing a major traffic disruption. In East Java, the flooding disrupted traffic from Situbondo to Surabaya.
Jakarta Post
Man-Made Earthquakes Increase Dramatically Tags: Man-Made Earthquakes

Man-Made Earthquakes Increase Dramatically 

The number of earthquakes has increased dramatically over the past few years within the central and eastern United States. Nearly 450 earthquakes magnitude 3.0 and larger occurred in the four years from 2010-2013, over 100 per year on average, compared with an average rate of 20 earthquakes per year observed from 1970-2000.

 

Seismicity of the coterminous United States and surrounding regions, 2009–2012. Black dots denote earthquakes with a magnitude ≥ 3.0 are shown; larger dots denote events with a magnitude ≥ 4.0. Background colors indicate earthquake hazard levels from the U.S. National Seismic Hazard Map (NSHM).
Seismicity of the coterminous United States and surrounding regions, 2009–2012. Black dots denote earthquakes with a magnitude ≥ 3.0 are shown; larger dots denote events with a magnitude ≥ 4.0. Background colors indicate earthquake hazard levels from the U.S. National Seismic Hazard Map (NSHM). Learn more about the NSHM at http://earthquake.usgs.gov/hazards/?source=sitenav.
Credit: USGS

This increase in earthquakes prompts two important questions: Are they natural, or man-made? And what should be done in the future as we address the causes and consequences of these events to reduce associated risks? USGS scientists have been analyzing the changes in the rate of earthquakes as well as the likely causes, and they have some answers.

USGS scientists have found that at some locations the increase in seismicity coincides with the injection of wastewater in deep disposal wells. Much of this wastewater is a byproduct of oil and gas production and is routinely disposed of by injection into wells specifically designed for this purpose.

Review Article on Injection-Induced Earthquakes

U.S. Geological Survey geophysicist William Ellsworth reviewed the issue of injection-induced earthquakes in a July 2013 study published in the journal Science. The article focused on the injection of fluids into deep wells as a common practice for disposal of wastewater, and discusses recent events and key scientific challenges for assessing this hazard and moving forward to reduce associated risks.

What is Induced Seismicity?

Although it may seem like science fiction, man-made earthquakes have been a reality for decades. It has long been understood that earthquakes can be induced by impoundment of water in reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations.

Cumulative count of earthquakes with a magnitude ≥ 3.0 in the central and eastern United States,1970-2013. The dashed line corresponds to the long-term rate of 20.2 earthquakes per year, with an increase in the rate of earthquake events starting around 2009.

What is Wastewater Disposal?

Water that is salty or polluted by chemicals needs to be disposed of in a manner that prevents it from contaminating freshwater sources. Often, it is most economical to geologically sequester such wastewater by injecting it underground, deep below any aquifers that provide drinking water.

Wastewater can result from a variety of processes, including those related to energy production. For example, water is usually present in rock formations containing oil and gas and therefore will be co-produced during oil and gas production. Wastewater can also occur as flow back from hydraulic fracturing operations that involve injecting water under high pressure into a rock formation to stimulate the movement of oil and gas to a well for production.

Wastewater injection increases the underground pore pressure, which may, in effect, lubricate nearby faults thereby weakening them. If the pore pressure increases enough, the weakened fault will slip, releasing stored tectonic stress in the form of an earthquake. Even faults that have not moved in millions of years can be made to slip and cause an earthquake if conditions underground are appropriate.

Although the disposal process has the potential to trigger earthquakes, not every wastewater disposal well produces earthquakes. In fact, very few of the more than 30,000 wells designed for this purpose appear to cause earthquakes.

Hydraulic Fracturing

Many questions have been raised about whether hydraulic fracturing — commonly known as “fracking”— is responsible for the recent increase of earthquakes. USGS’s studies suggest that the actual hydraulic fracturing process is only very rarely the direct cause of felt earthquakes. While hydraulic fracturing works by making thousands of extremely small “microearthquakes,” they are, with just a few exceptions, too small to be felt; none have been large enough to cause structural damage. As noted previously, underground disposal of wastewater co-produced with oil and gas, enabled by hydraulic fracturing operations, has been linked to induced earthquakes.

Unknowns and Questions Moving Forward

House damage in central Oklahoma from the magnitude 5.6 earthquake on Nov. 6, 2011. Research conducted by USGS geophysicist Elizabeth Cochran and her university-based colleagues suggests that this earthquake was induced by injection into deep disposal wells in the Wilzetta North field.

Photo Credit: Brian Sherrod, USGS.

USGS scientists are dedicated to gaining a better understanding of the geological conditions and industrial practices associated with induced earthquakes, and to determining how seismic risk can be managed.

One risk-management approach highlighted in Ellsworth’s article involves the setting of seismic activity thresholds for safe operation. Under this “traffic-light” system, if seismic activity exceeds preset thresholds, reductions in injection would be made. If seismicity continues or escalates, operations could be suspended.

The current regulatory framework for wastewater disposal wells was designed to protect drinking water sources from contamination and does not address earthquake safety. Ellsworth noted that one consequence is that both the quantity and timeliness of information on injection volumes and pressures reported to the regulatory agencies is far from ideal for managing earthquake risk from injection activities.

Thus, improvements in the collection and reporting of injection data to regulatory agencies would provide much-needed information on conditions potentially associated with induced seismicity. In particular, said Ellsworth, daily reporting of injection volumes, and peak and average injection pressures would be a step in the right direction, as would measurement of the pre-injection water pressure and tectonic stress.

Importance of Understanding Hazards and Risks

There is a growing interest in understanding the risks associated with injection-induced earthquakes, especially in the areas of the country where, before the modern boom in oil and gas production, earthquakes large enough to be felt were rare.

For example, wastewater disposal appears to be related to the magnitude-5.6 earthquake that struck rural central Oklahoma in 2011 leading to a few injuries and damage to more than a dozen homes. Damage from an earthquake of this magnitude would be much worse if it were to happen in a more densely populated area.

The USGS and Oklahoma Geological Survey (OGS) have conducted research quantifying the changes in earthquake rate in the Oklahoma City region, assessing and evaluating possible links between these earthquakes and wastewater disposal related to oil and gas production activities in the region. In a joint statement {http://www.usgs.gov/newsroom/article.asp?ID=3710}, USGS and OGS identified wastewater injection as a contributing factor for the 2011 earthquake swarm and damaging magnitude 5.6 event.

Studies show one to three magnitude 3.0 earthquakes or larger occurred yearly from 1975 to 2008, while the average grew to around 40 earthquakes per year from 2009 to mid-2013.

“We’ve statistically analyzed the recent earthquake rate changes and found that they do not seem to be due to typical, random fluctuations in natural seismicity rates,” said Bill Leith, USGS seismologist. “These analyses require significant changes in both the background rate of events and earthquake triggering properties needed to have occurred to be consistent with the observed increases in seismicity. This is in contrast to what is typically found when modeling natural earthquake swarms.”

The Oklahoma analysis suggests that a contributing factor to the increase in earthquakes occurrence may be from injection-induced seismicity from activities such as wastewater disposal. The OGS has examined the behavior of the seismicity through the state assessing the optimal fault orientations and stresses within the region of increased seismicity, particularly the unusual behavior of the swarm just east of Oklahoma City.

Oilfield waste arrives by tanker truck at a wastewater disposal facility near Platteville, Colo. After removal of solids and oil, the wastewater is injected into a deep well for permanent storage underground. This disposal process has the potential to trigger earthquakes, but very few wastewater disposal wells produce earthquakes. No earthquakes are associated with injection at the site in this photograph. Photo taken on Jan. 15, 2013

Photo Credit: William Ellsworth, USGS

Start with Science

As the use of injection for disposal of wastewater increases, the importance of knowing the associated risks also grows. To meet these challenges, the USGS hopes to increase research efforts to understand the causes and effects of injection-induced

Contacts and sources:
USGS

 Learn more about that research at: http://geology.gsapubs.org/content/early/2013/03/26/G34045.1.abstract.

Learn more about the NSHM at http://earthquake.usgs.gov/hazards/?source=sitenav.

Source: http://www.ineffableisland.com/2014/01/man-made-earthquakes-increase.html

RSS
Search a Blog

August 2014 (404)
July 2014 (654)
June 2014 (607)
May 2014 (660)
April 2014 (776)
March 2014 (692)
February 2014 (747)
January 2014 (962)
December 2013 (852)
November 2013 (858)
October 2013 (858)
September 2013 (781)
August 2013 (272)
Blog Categories

WHO IS ONLINE
Focusing On Real Values

Get Your Gold Out Of Dodge can help you today protect your international gold holdings. Still stacking stateside? Internationalize today and sleep that much better.

A great way to a new standard.

Gold in small units, also one gram at time

Need a real unique gift for your big love? Get your "Love-Gold-Card" in our shop.

Gold, a secure future.

Register and become a partner

HERE

Short YouTube Film explain

HERE

Products for your Wellness

Important: For all products chose at the top of the page the  language (English or German) and currency!

 click HERE to reach all products

TATWellness deliver worldwide.

Support B.O.L.E.

Your support to have the B.O.L.E. (incl.all articles) open and free for everyone is much appreciated.

In Your Service

B.O.L.E.

 

 

This website is powered by Spruz